Fast K-sample Ball Divergence Test for GWAS Data
bd.gwas.test(
x,
snp,
screening.method = c("permute", "spectrum"),
refine = TRUE,
num.permutations,
distance = FALSE,
alpha,
screening.result = NULL,
verbose = TRUE,
seed = 1,
num.threads = 0,
...
)
a numeric vector, matrix, data.frame, dist object.
a numeric matrix recording the values of single nucleotide polymorphism (SNP). Each column must be an integer vector.
if screening.method = "spectrum"
, the spectrum method is applied to
screening the candidate SNPs, or otherwise, the permutation method is applied. Default: screening.method = "permute"
.
a logical value. If refine = TRUE
, a \(p\)-values refining process is applied to
the SNPs which passes the pre-screening process. Default: refine = TRUE
(At present, refine = FALSE
is not available).
the number of permutation replications. When num.permutations = 0
,
the function just returns the Ball Divergence statistic. Default: num.permutations = 100 * ncol(snp)
if distance = TRUE
, the elements of x
will be considered as a distance matrix. Default: distance = FALSE
.
the significance level. Default: 0.05 / ncol(snp)
.
A object return by bd.gwas.test
that
preserving the pre-screening result.
It works only if the pre-screening is available.
Default: screening.result = NULL
.
Show computation status and estimated runtimes. Default: verbose = FALSE
.
the random seed. Default seed = 1
.
number of threads. If num.threads = 0
, then all of available cores will be used. Default num.threads = 0
.
further arguments to be passed to or from methods.
bd.gwas.test returns a list containing the following components:
statistic
ball divergence statistics vector.
permuted.statistic
a data.frame containing permuted ball divergence statistic for pre-screening SNPs.
If refine = FALSE
, it takes value NULL
.
eigenvalue
the eigenvalue of spectrum decomposition. If refine = TRUE
, it takes value NULL
.
p.value
the p-values of ball divergence test.
refined.snp
the SNPs have been refined.
refined.p.value
the refined \(p\)-value of significant snp.
refined.permuted.statistic
a data.frame containing permuted ball divergence statistics for refining \(p\)-values.
screening.result
a list containing the result of screening.
Yue Hu, Haizhu Tan, Cai Li, and Heping Zhang. (2021). Identifying genetic risk variants associated with brain volumetric phenotypes via K-sample Ball Divergence method. Genetic Epidemiology, 1–11. https://doi.org/10.1002/gepi.22423
# \donttest{
library(Ball)
set.seed(1234)
num <- 200
snp_num <- 500
p <- 5
x <- matrix(rnorm(num * p), nrow = num)
snp <- sapply(1:snp_num, function(i) {
sample(0:2, size = num, replace = TRUE)
})
snp1 <- sapply(1:snp_num, function(i) {
sample(1:2, size = num, replace = TRUE)
})
snp <- cbind(snp, snp1)
res <- Ball::bd.gwas.test(x = x, snp = snp)
#> =========== Pre-screening SNPs ===========
#> [1] "None of SNP pass the pre-screening process!"
mean(res[["p.value"]] < 0.05)
#> [1] 0.039
mean(res[["p.value"]] < 0.005)
#> [1] 0.005
## only return the test statistics;
res <- Ball::bd.gwas.test(x = x, snp = snp, num.permutation = 0)
## save pre-screening process results:
x <- matrix(rnorm(num * p), nrow = num)
snp <- sapply(1:snp_num, function(i) {
sample(0:2, size = num, replace = TRUE, prob = c(1/2, 1/4, 1/4))
})
snp_screening <- Ball::bd.gwas.test(x = x, snp = snp,
alpha = 5*10^-4,
num.permutations = 19999)
#> =========== Pre-screening SNPs ===========
#> [1] "None of SNP pass the pre-screening process!"
mean(res[["p.value"]] < 0.05)
#> [1] 0
mean(res[["p.value"]] < 0.005)
#> [1] 0
mean(res[["p.value"]] < 0.0005)
#> [1] 0
## refine p-value according to the pre-screening process result:
res <- Ball::bd.gwas.test(x = x, snp = snp, alpha = 5*10^-4,
num.permutations = 19999,
screening.result = snp_screening[["screening.result"]])
# }